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Analytical expressions are obtained that allow one to evaluate the dependence between the time of pressure 

growth in cryostats containing cryogenic fluids and the thermal energy entering the cryostat. 

Introduction. Emergency conditions in cryostats develop when a cryogenic agent is supplied with 

appreciable heat fluxes greatly exceeding those specified by design in heat bridges and insulation. Such situations 

are typical on loss of vacuum in the insulation cavity of a cryostat, during operation of any device with excessive 

power in a cryogenic fluid, or, which is particularly characteristic, in transition to the normal state of the 
superconducting winding of a magnet immersed in liquid helium. 

The inflow of large amounts of heat to a cryogenic agent causes its intense evaporation and, in the case of 

restricted outflow of vapor or of a vapor-liquid mixture through the gas release line or protective fittings, leads to 

an inadmissible growth of pressure in the cryostat, which may cause its damage. To provide safe conditions of 

operation, it is necessary to know the time during which in the cryostat when there is an active heat source of 

known constant or variable power, an acceptable level of pressure not exceeding, for example, the operating pressure 

of protective devices of certain throughput capacity is ensured. Another problem amounts to determining the 

admissible power of heat release in the cryostat or finding the throughout capacity of its protective fittings and gas 
release line. 

Methods for calculating pressure in a cryostat in emergency conditions have been considered by a number 

of authors [1, 2 ]. The solutions in these works were found by using a numerical method [1 ] or nomograms [2 ]; 

they do not provide a clear representation of the dependence between the physical parameters characterizing the 

processes in a cryostat. In the present work an attempt is made to use an analytical method for calculating 
emergency regimes of cryostats. 

Statement of Problem and Calculation Technique. On addition of a large amount of heat to vessels with 
cryogenic fluids leading to a rapid change in pressure, the processes occurring in these vessels are made complicated 

by the formation of nonequilibrium states of the two-phase liquid-vapor medium and its structural nonuniformity. 

For describing such complex processes, many authors, while determining the dependences between thermal 

parameters and caloric functions, use relations of quasistatic equilibrium thermodynamics. In the present work, a 

similar simplified model is used within the framework of which an assumption about the preservation of the mutual 

equilibrium of phases allows one to make an approximate calculation of the relationship between the energy entering 

a cryostat and the pressure in it. Also, the following assumptions were made: the pressure in the cryostat does not 

exceed the critical pressure of the cryogenic fluid, the pressure and temperature in the entire volume of the cryostat 

bath are identical, and the ambient pressure is constant. 

A T - S  diagram of the thermodynamic process occurring in the cryostat is presented in Fig. 1. In a closed 

vessel, or when the rate of evaporation of the cryogenic agent greatly exceeds the throughput capacity of the drain 

lines, the thermodynamic process (0-1) will follow an isochore that depends on the degree of vessel filling ~/, - 

Gcr(z)/G*. Calculation of closed vessels (without drainage) is described in [3, 4 ]. On attainment of pressure Pl, 
the cryogenic agent is discharged through a branch pipe and protective fittings, i.e., a valve or blowout diaphragm; 

in this case the process proceeds with a certain increase in pressure (1-2') or at a constant pressure (1-2). The 

process is characterized by a continuous change in the specific volume of the cryogenic agent that depends on the 
quantity ~o. 
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Fig. 1. T - S  diagram of process of heat supply to cryostat (solid curves, 

constant pressure; dashed curve, constant specific volume): O) beginning of 

process; 1) opening of protective fittings; 2 or 2') end of process (if cryogenic 
agent escapes from cryostat as saturated vapor). 

Let us write in differential form the energy balance of the thermodynamic system considered 

dJV + dWlr m = dU + d l ,  (1) 

where d W  is the energy released in the cryostat, for example, in transition of a superconducting magnet to the 

normal state or as a result of the action of any heat source for a definite period of time; dWins is the thermal energy 

associated with heat inflow through the thermal insulation of the cryostat. Since W > > Wins, this portion of energy 
will be neglected in further analysis. 

Thermal energy d W  is spent in changing the internal energy of the cryogenic agent dU, i.e., in increasing 

the pressure in the cryostat, and its portion d l  escapes with the vapor released. Expanding the components of the 
energy balance, we write 

dU = d (GcrU) = dGcrU + Gcrdu, 

d I  = iescdGesc, 

where 

Gcr=Go- f mdt; Gesc= f md~. 
o o 

Substituting dU and d l  into Eq. (1) and dividing all the terms of the energy balance equation by Gcr, we 
obtain 

d W  dGcr iescdGes c 
- - - u  + d u  + - -  (2) 

Gcr Gcr Gcr 

We will determine now the terms of Eq. (2). We will find the ratio dGcr/Gcr from the equation of state p V  ffi 

GcrzRT, having differentiated the right- and left-hand sides of the equation at constant values of z and R: 

dGcr dp dT  

Gcr p T "  

Substituting into the equation that defines the specific internal energy of the cryogenic agent u = i - pv, 

the expression for the enthalpy of moist vapor 

i = i' + 0'- d) T 
dT' 

we obtain 
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u = i  + ( v - v ) T  - p v .  

From the C lapeyron-Claus ius  equation applied to vapor - l iqu id  mixtures we find 

d_p_= r 

d T  T (v - v') " 

Substitution of Eq. (4) into Eq. (3) yields 

(3) 

(4) 

q 

t t = i  + v - - V  . , r - - p v .  

In engineering calculations we may assume that i' -- c'vT [5 ]. Since p v  ffi z R T ,  we finally obtain 

s 

u = c T + - - r - - - - T r  - -  z R T .  
V - - V  

The total differential of the change in the specific internal energy can be written in the form 

du  = - ~  + d r ,  
T 

where (OulOv)v  = Cv and (Ou/Ov)TdV = p T I z ( O z / O T ) v .  At z = const, we have d u  -- cvdT .  

Substituting into Eq. (2) expressions that define dGcr /Gcr ,  u,  and du ,  we obtain 

d W  V .  = ( ~  - ~ + ,R)  aT + dpp 7" (r - ,R )  + 

i f 

dp  v -  v d T  v -  v iescdGes c 
+ . , r . , r + - -  (5) 

p v - v  T V - - V  Gcr 

F o r  the  c o n v e n i e n c e  of  the  s u b s e q u e n t  i n t e g r a t i o n  we t r a n s f o r m  in t he  e q u a t i o n  t he  t e r m  

( d p / p ) T ( c '  v - z R ) ,  having substituted into it the quantities dp  = ( d T / T ) ( r /  (v" - v') and p - z R T / v .  Then  

dp dT r v_ 
7" ( ~  - zR) = w t 

p z R  v - v  T 

After this, Eq. (5) takes on the form 

d W  d T  dp  d T  

G c r  - a l d T  + a2 T + a3 ~ - a3 ~ + - -  
iescdGesc (6) 

Gcr 

where 
t 

' r P P - -  V 
a I = c  v -  c v +  z R ;  a 2 =  (c v - z R ) -  . , ;  a 3 -  , r .  

z R  v - -  v v - -  v 

We will assume that the physical parameters are determined at mean values of pressure ~ = (Pl + p2 ) /2  

or temperature T = (Tl + T2)/2 ,  where Pl and Tl are the pressure and temperature in the cryostat at time r = 0, 

and P2 and T 2, at time r. Taking account of the fact that z R  = - ~ v / T ,  we obtain 

r v v - -  v 
a 1 = c v -  c v +  z R ;  a 2 = (c v -  z R ) - -  , ; a 3 -  , r .  

z R  v - - v  v - - v  
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The  specific volume of a two-phase mixture entering into the coefficients a i ,  a2, a n d  a3 is de te rmined  using 
an equation from [3 ]: 

w 

IPV 

,/:v + (l - ~) v" 

and  the specific heat  is determined by means of an equation from [5 ]: 

i 

= c;  +v-, <c;-c;) 
n w �9 

We integrate Eq. (6) within the limits of the change of the pressure and tempera ture  in the cryostat  for 
t i m e  3: 

~f dW ~f iescdGes c T2 7"2 dT P2 dp 
0 Gcr 0 ~ =  a l f  d T +  (a 2 - a n )  f ~ + a  3 f ~ .  (7) 

TI TI P l p  

T he  f ight-hand side of Eq. (7) represents a change in the internal energy related to a unit  mass of cryogenic agent. 

Having integrated it, we write Eq. (7) in the form 

�9 f d w  ~y i ~ d % c  
o % - o Gc------~ - ~ '  (s) 

where A = al(T2 - TI) + (a2 - a3) In (T2/TI) + a 3 In (PZ/pl). 

If we assume that the flow rate of the cryogenic agent that escapes from the cryostat is constant in the 

range of pressures Pl and P2 (where Pl is the opening pressure of the protective device and P2 is the prescribed 

maximal calculated pressure established in the cryostat,  for example, within the limits of the adjustment  of the 

protective device Ap ffi P2 - Pl) ,  then Gcr -- GO - mr and dGesc -- mdr. 
As a result,  Eq. (8) takes on the form 

l "  

f a w  C o  - ,4 (9) 
0 GO - mr ies c In Go _ mr  " 

The  flow rate of the gas escaping from the cryostat  is determined from the equation m ffi/c, where f is the 

cross-sectional area of the flow portion of the protective fittings and gas release branch pipes. The  quant i ty  c, which 

is the ratio of the flow velocity of the cryogenic agent escaping from the cryostat  to the specific volume, is de termined 

differently using the well-known equations, depending on the assumptions made regarding the state of the cryogenic 

agent leaving the cryostat.  For example, on the assumption of the adiabatic escape of vapor, c = (2Ai)tFZ/v ", where 

Ai is the difference in the enthalpies of the cryogenic agent at the entrance and exit from a branch pipe. 

Two cases of solving Eq. (9) are possible: in the first case heat is supplied to the liquid cryogenic agent  

from a heat source of constant power Q, and then dW = Qdr, whereas in the second case, a body heated  to a certain 

temperature cools off in the vessel of the cryostat  transmitting its thermal energy to the cryogenic agent,  i.e., d W  
= Q(Oar. 

Action of a Heat  Source  of Constant  Power. At a constant  power of the object of heat  generat ion,  

integration of Eq. (9) gives 

) ~ z .0, 
- i e s c  l n G o _ m r  " 

We can calculate any parameter  from Eq. (10). For example, one has to find the power of a heat  source in 

a cryostat  at which the pressure in it increased from Pl to P2 in a certain time r. In this case the needed  power of 

heat generation is defined by the relation 
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Fig. 2. Time of pressure growth in helium cryostat  depending on power of 

heat generation (the initial pressure is 0.15 MPa, the final pressure is 0.17 

MPa). The  parameter  is the diameter  of the hole for releasing vapor: 1) 10 

mm, 2) 20, 3) 50. The  dashed-dot ted  lines correspond to Q = miesc for holes 

of different diameters,  z, sec; Q, kW. 

A 
( 2 = m  Go +iesc �9 (11) 

In G o _  ms 

When a calculation is performed using Eq. (11), we determine the value of A from the prescribed values 

of Pl and P2 and establish the dependence Q = f ( r ) .  We note that when the pressure in the cryostat  does not rise 

under  the action of a heat  source, i.e., thermal energy is not spent in changing the internal  energy  (.4 = 0),  this 

occurs at Q = miesc. If one needs to determine the time of the change in pressure from Pl to P2 at the prescribed 

power of heat  generation,  then from Eq. (I0) we obtain 

(12) 

Since A depends on the specific volume of the cryogenic agent, and this volume, in turn,  depends  on the 

vessel filling degree ~/,, which is determined by the duration of the process, then the calculation of x by  Eq. (12) is 

made  by the method of successive approximations. 

As an example,  Fig. 2 presents graphs of the dependence T =f (Q)  that show the time in which the pressure 

will rise in a cryostat  filled with liquid helium with an active heat source of a certain power. Th e  graphs were plotted 

for different values of the d iameter  of the hole through which helium escapes from the cryostat  with time. In this 

example Pt -- 0.15 MPa, P2 = 0.17 MPa. Go ffi 100 kg, and V--- 1 m 3. Helium leaves the cryostat  in the form of 

sa turated vapor, i.e., iesc -- {'. As follows from the graphs, T --, dO when Q --* miesc, which determines  the minimum 

power at which there  is no rise in pressure. 

Power  of  a Heat  Source  as  a Function of  Time. We will consider this case using as an example the transi t ion 

of a superconducting magnet  to the normal state. In transition, a portion of the energy stored in the magnet  is 

spent in heat ing the winding. Leaving outside the brackets the rapidity of this heating, de termined by  the speed 
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of propagation of the normal zone in the conductor, the time of current decay in the winding, the design features 

of the magnet, and by the conditions of heat exchange in the liquid helium, we assume that at the initial time 

instant (r = 0) the entire volume of the idle winding is at temperature T 0, and subsequently it cools off uniformly 

in the medium of the cryogenic fluid. 

The main problem is reduced to the determination of the integral f (dW/(Go - mr)) in Eq. (9). The quantity 
0 

of heat given up by the body (magnet) during cooling can be found from the equation 

W = Q 0  [ 1 - ~ ( 0 1 ,  (13) 

where ~(r) = (0 - 79/(0 0 - 79 is the dimensionless temperature of the body, which is the mean over the volume 

or along any of the coordinates (for a one-dimensional problem) at any time instant; 0 0 is the quantity of heat 

transferred to helium during body cooling. The upper limit of the value Qo is equal to the energy stored in the 

magnet W0. 
We shall assume that the body temperature changes according to an equation of the following form [6 ]: 

2 
= P exp ( -  P l Fo),  (14) 

where Fo = (at)/12; Bi = (aO/2. 
The quantity P, being a function of the Biot number, is determined, depending on the shape and dimensions 

of the body, from equations or tables familiar in heat conduction. 

Differentiating Eq. (13) after substitution of Eq. (14) into it, we obtain 

2 Fo) dr. (15) dw-  O-~ exp ? 

Relation (15) makes it possible to determine the value of the integral in Eq. (9): 

f d._____~W _ QoPpl2_______aa exp ( -  P l - - K In + P l Fo , 
0 G O -mz" 12 0 G O - m r  G 0 - m r  

(16) 

where 

K - m 
OoP  a 

m? 
exp [ ( -  bt2aGo)/(m3)]. 

The final form of Eq. (9) is 

(K - iesc) In Go + ~-~ r = A.  (17) 
GO-- mr  

Relation (17) allows one, just as in the case of a constant power, to determine the time during which the 

pressure changes in a cryostat in which a body cools off after rapid heating, transmitting its thermal energy to the 

cryogenic agent. 
Using the relations obtained for the two cases considered, it is convenient to analyze different regimes and 

establish the connection between the emergency heat generation and the cross-sectional area of branch pipes needed 
for vapor release. We note that a sufficiently accurate calculation of the needed quantities, for example, of the time 

of pressure rise for the case of heat power depending on time, involves rather accurate determination of the Biot 

number and, consequently, of the heat exchange coefficient, whose numerical value very closely approximates the 
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objective data, as well as correct averaging of the thermal conductivity and thermal diffusivity coefficients, which 
change in a rather wide range of temperatures: from the initial temperature of the heated body to the temperature 
of the liquid cryogenic agent. Therefore, there is a reliable way of assigning convenient determining temperatures 
by introducing into Eq. (17) correction coefficients found from comparison of the predicted and experimental data 
for nearly similar cases. Another possibility is calculation for small changes Ap, from which one must determine 
the values of Ar corresponding to these changes. 

It is also possible to carry out calculations by simpler equations (10)-(I 2), having averaged the heat source 
power. In particular, the utility of such an approach was revealed by a verifying calculation of the power that was 
scattered by the guard resistors of the superconducting coil described in [7 ]. According to the operational 
conditions, all the energy stored in the coil is liberated inside the cryostat. In preliminary tests of this magnetic 
system, the pressure in a cryostat containing 330 liters of liquid helium increased from 0.17 to 0.22 blPa 5 sec after 
opening of the protective valves, because of their small flow cross-sections (the nominal diameters of the valves 
were g0 and 25 ram. The entire helium in the liquid state was expelled from the cryostat in 13 sec. 

Proceeding from the induction and resistance values of the coil, the mean power of heat generation was 
equal to 0.095 MW. Calculation by Eq. (11) showed that for a mean velocity of liquid helium discharge of 3.17 
kg/sec and enthalpy /esc " 14.5-103 J/kg, corresponding to mean pressure ff = 0.195 MPa, the power of heat 
generation must be equal to 0.07 MW, i.e., the error does not exceed 30%. 

N O T A T I O N  

p, pressure in space with cryogenic agent, Pa; T, temperature in space with cryogenic agent, K; 00, initial 
temperature of cooled body, K; ~, mean temperature of body, K; Go, mass of cryogenic agent at initial time instant, 
kg; Gcr, mass of cryogenic agent in inner space of cryostat at any time instant, kg; Gesc, mass of cryogenic agent 
that escaped from the cryostat, kg; G*, mass of cryogenic agent in entirely filled inner space of cryostat, kg; W, 
degree of filling of inner space; r, time, sec; W, thermal energy liberated in cryostat, J; U, internal thermal energy 

of cryostat, J; 1, thermal energy of cryogenic agent escaping from cryostat, J; Wins, thermal energy supplied through 
insulation, J; Wo, energy stored in superconducting magnet, J; Q0, quantity of heat transferred during complete 
cooling of body, J; u, specific internal energy, J/kg; du, change in specific internal energy during time dr, J/kg; 
Q, power of heat source, W; i, iesc, enthalpy of cryogenic agent inside cryostat and of cryogenic agent escaping 
from cryostat, J/kg; S, entropy, kJ/K; m, flow rate of cryogenic agent escaping from the cryostat, kg/sec; r, heat 
of vaporization of the cryogenic agent, J/kg; R, gas constant, J / (kg.  K); z, compressibility factor; cv, mass isochoric 
heat capacity, J / (kg.K);  V, volume of helium bath, m3; v, specific volume, m3/kg; /xt, root of characteristic 
equation; l, characteristic dimension of cooled body, m; a, thermal diffusivity, m2/sec; 2, thermal conductivity of 
body, W/(m-K);  ct, coefficient of heat exchange between body and cryogenic agent, W/(m2.K);  Fo, Fourier 
number; Bi, Biot number; A, J/kg; K, J/kg; P, complexes determined in the text. Subscripts and superscipts: 1 
and 2, beginning and end of the process; ', liquid phase at saturation line; ", vapor phase. 
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